Real Time Surveillance and Early Warning Systems

Retrospective analysis of viral infections in hatcheries of the California Department of Fish and Wildlife and development of an online database and visualization platform to support disease surveillance

Aquaculture is rapidly growing in economic importance in the USA, where California (CA) is considered as an emergent leader aquaculture industry worth an estimated $110 million per year. The primary aquaculture species in the state are salmonids, particularly Oncorhynchus sp. However, these fish are affected by many endemic infectious agents such hematopoietic necrosis virus (IHNV), cutthroat trout virus (CTV), bacterial kidney disease (BKD), Flavobacterium columnare and F. psychrophilum.

Network Analysis of Livestock Movements (Including Poultry and Hatching Eggs) Introduced in California from 2004 to 2014: Implications for Potential Introduction and Spread of Infectious Diseases

Transmission of infectious diseases mostly occurs due to contacts among infected and susceptible individuals. Therefore, the characterization of the contact patterns among individuals is a prerequisite to better understand and even predict the spread of diseases in a population. California is one of the most important states for livestock production and trade, particularly cattle and poultry.

Spatial and Temporal Distribution and the Implementation of a Near Real-Time Surveillance System for Infectious Hematopoietic Necrosis Virus (IHNV) Infection in California

Aquaculture is rapidly growing in economic importance in the USA, where California (CA) is considered as an emergent leader aquaculture industry that worth an estimated $110 million [1]. Primary aquaculture species in the state are rainbow trout and various salmon species for which endemic infectious hematopoietic necrosis virus (IHNV), an acute systemic disease [2] and notifiable for the World Animal Health Organization (OIE), that causes high mortality and significant economic and social losses in hatchery stocks and wild salmonids in fresh waters [3].

Network analysis to identify important factors for managing zones

This WP will describe spatial and temporal dynamics of fish transportation and characterize the contact network patterns among the fish holdings based on the transportations, characterize infection-inducing contact patterns, identify the highly connected sites, and elucidate implications of the contact pattern on controlling disease spread.

Spatio-temporal dynamics of condemnation cases in cattle slaughter plants in California and other US states from 2004-2015

The meat and cattle industry is the largest segment of U.S. agriculture. In 2015 the US commercial slaughter 28.74 million head with the commercial carcass weight of 23.69 billion pounds (National Cattlemen’s Beef Association). Based on the data obtained from USDA in 2015, 141,450 carcasses were condemned in the US which is approximately 0.5% of the total cattle carcasses produced in the US.

Development of an early-warning system based on real-time risk assessment for the prevention and rapid control of Avian Influenza in California Poultry industry

The recent cases of highly pathogenic avian influenza (HPAI) in a commertial Turkey flock in Stanislaus country (H5N8, Jan 2015) and a commertial poultry flock (broiler chickens and ducks) in Kings county (H5N8, Feb 2015) highlights the urgent need to develop and implement solutions to protect California poultry operations (PO) against avian influenza (AI) outbreaks.

Development of an early-warning system based on real-time risk assessment, producers self-assessment of biosecurity & educational tools for the prevention, early detection & rapid control of AI outbreaks in the US poultry industry

The goal of this interdisciplinary, multi-institution, research-extension project within the "Critical Agricultural Research and Extension (CARE)" priority is to develop an innovative early-warning system for better prevention and control of Avian Influenza (AI) outbreaks in US poultry industry.