
True Prevalence from Apparent Prevalence: Obtaining the posterior 
distribution for true prevalence given diagnostic test results (apparent 
prevalence) and priors for sensitivity and specificity. 
 
In many cases, interpreting serological surveys of disease is difficult 
because most diagnostic (or screening) tests have imperfect sensitivity and 
specificity.  Thus, there is a distinction between true prevalence (the 
proportion of a population that is actually infected) and apparent 
prevalence (the proportion of the population that tests positive for the 
disease).  Given point estimates for sensitivity (se), specificity (sp), 
and apparent prevalence (AP), one may calculate true prevalence using the 
following expression: 
 
                  true prevalence = (AP+sp-1)/(se+sp-1). 
 
Obtaining estimates of true prevalence when sensitivity and specificity are 
known with uncertainty is more challenging.  Given the outcome of a 
binomial experiment and prior distributions for sensitivity and 
specificity, the following code can be used to obtain point estimates and 
probability intervals for true prevalence. 
 
Consider the following example, motivated by hypothetical data for sampling 
for Salmonella enteriditis (SE).  Assume that interest centers on 
estimating true prevalence (pi), the predictive value positive (pvp), and  
1 - the predictive value negative (OneMinusPVN). 
 
Let us assume that we randomly sample 100 broilers using fecal culture for 
SE.  Further, let us assume that of the n=100 individuals tested, y=0 test 
positive.  That is, SE was not successfully cultured from any of the 100 
birds. 
 
The following model can be used to obtain posterior probabilities of SE 
shedding, given prior probabilities for the sensitivity (se), specificity 
(sp), and prevalence (pi) of the test. 
 
let us assume that specificity is almost certainly 1.000.  So, we model sp 
using the following prior: 
 
sp ~ beta(9999,1). 
 
Let us assume that sensitivity is well modeled by a prior where a 90% prior 
probability interval is (0.30, 0.70), with prior mode (best guess) of 0.50.  
Such a probability statement corresponds to the following distribution: 
 
se ~ beta(8,8). 
 
Assume that there is effectively no prior information for true prevalence 
(pi), so the prior for pi is uniform, namely: 
 
pi ~ beta(1,1) 
 
The following model can then be used to obtain posterior distributions of 
PVP, pi, and 1-PVN: 
 



MODEL      
 
Model{ 
 for(i in 1:1){ 
  y[i] ~ dbin(ap[i],n[i]) 
  ap[i] <- se*pi+(1-sp)*(1-pi) 
  } 
 se ~ dbeta(8, 8) 
 sp ~ dbeta(9999, 1) 
 pi ~ dbeta(1, 1) 
 pvn <- sp*(1-pi)/((1-se)*pi+sp*(1-pi)) 
 pvp <- se*pi/(se*pi+(1-sp)*(1-pi)) 
 OneMinusPVN <- 1-pvn 
} 
  
DATA       
list(y=c(0),n=c(100)) 
  
RESULTS    
 
Estimates with 95% central credibility intervals 
 
 node  mean  sd  MC error 2.5% median 97.5% start sample 
pi 0.02238 0.02437 2.058E-4 5.185E-4 0.01468 0.08842 10000 50001 
se 0.4679 0.1249 6.486E-4 0.2308 0.4663 0.7123 10000 50001 
sp 0.9999 9.814E-5 8.214E-7 0.9996 0.9999 1.0 10000 50001 
pvp 0.9632 0.09053 5.082E-4 0.7125 0.9903 0.9998 10000 50001 
OneMinusPVN 0.013 0.01687 1.427E-4 2.418E-4 0.007532 0.05828 10000 50001 
 
 
These are the posterior distributions 
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